Long-pulse Tokamak Operations : a case study of full-superconducting magnet devices

- Sang-hee Hahn
- Korea Institute of Fusion Energy (KFE)
- Daejeon 34133, South Korea

hahn76@kfe.re.kr

Group photo from 2010 IISS (UT Austin, US)

Introduction

- Extension of plasma pulse length is essential for economically meaningful fusion reactor
 - The longer the plant runs, the more electricity we can get per run
- The task is *not* equivalent to the mere physical extrapolations of known short pulses
 - Not every scenario can do the long pulse
 - The extension of the pulse strongly depends on machine specifics
- Scope of the lecture will be limited to
 - Tokamak operation (especially the superconducting devices)
 - Phenomena that the KSTAR encountered

KSTAR tokamak (2008-present)

Brief history (year-descriptions) 2008 - First plasma achieved 2010 – First diverted H-mode for SC devices 2011 – First ELM suppression at n=1 RMP 2016 – Long pulse H-mode over 1 minute 2017 – Long pulse 73s 2018 – ELM suppression over 30s 2020 – Long pulse achieved to 91s Reach to 1.1 MA / 15s with Wmhd ~ 0.8 GJ 2022 – New device record for ELM suppression (>40s)

KSTAR tokamak (2008-present)

Figure 1. KSTAR geometry (2019)

- Creating a long pulse
- Encountering challenges in control

• Concluding remarks

Time scale of the plasma discharge operation

The "fast" time scale:

- * Most of plasma physics occur
- * Human cannot react on time, automation needed
- * Premeditated control setup & scheme
- * requires "deterministic realtime" for control infra

Time scale of the plasma discharge operation

The fastest man In the world The "slow" time scale:

* Human can react based on visualization & audio & reflex

* Related diagnostics are slower (KSTAR EPICS update : 1 sample/second)

* Macroscopic timescale phenomena can be consequences from accumulation of microscopic events

Time scale of the plasma discharge operation

Creation of a long pulse : two aspects to consider

• Only a few scenarios with high fraction of non-inductive current drive (NICD) can sustain the pulse over the inductive flux consumption limit

• The long pulse discharges interacts with the surrounding hardware, changing the known engineering constraints during the discharge

Creation of a long pulse : two aspects to consider

- Only a few scenarios with high fraction of non-inductive current drive (NICD) can sustain the pulse over the inductive flux consumption limit
 - Amount of current drive is determined by the scenario
 - Choice of scenario in the operating space

• The long pulse discharges interacts with the surrounding hardware, changing the known engineering constraints during the discharge

Creating & sustaining plasma current in a tokamak : methods of current drive (CD)

Vloop : "loop voltage"

Rplasma : Resistance of plasma NBCD : current drive by Neutral Beam

ECCD : current drive by EC resonance

 I_{BS} : the "Bootstrap current" induced by the density gradient

Creating & sustaining plasma current in a tokamak

- Inductive method creates plasma current by Faraday's law of induction
 - The amount of current is determined by plasma resistance

Wesson, "Tokamaks" 4th ed, p14 (2004)

Creating & sustaining plasma current in a tokamak : inductively sustained pulse length is limited

Y. Gribov, J.B. Lister, and A. Portone, IEEE Control Systems Magazine 26, 79 (2006).

- Amount of flux consumption (Φ_{OH}) is limited by the max flux provided by the central solenoid (CS) coil
 - The derivative of the flux consumption corresponds to the loop voltage (Vloop)
- Note that it is a machine constraint:
 - Large current power supply is expensive
 - The amount of the Vloop is often limited by the SC coils' AC coupling loss limitations
 - The plasma resistance is difficult to determine

Sustaining of plasma current by non-inductive current drive (NICD) methods

Jul. 29, 2022

Earlier L-H by creating short Ip flattop can save the flux consumption during the rest of pulse

Various Scenarios exist in a range of operating space

Bootstrap Current fraction \rightarrow

Various Scenarios exist in a range of operating space : Scenarios with high f_{BS} chosen for the long pulse

Bootstrap Current fraction \rightarrow

100% non-inductive CD high β_P scenario found at high B_T

- $f_{NI} \sim 1.0$ high β_P achieved - $V_{loop} \sim 0.0$ with NBI+ECH =
 - 5.5MW
 - $\beta_{\rm P}$ > 3.0, $\beta_{\rm N}$ ~ 2.0
 - Central ECCD is essential
 - At B_T= 2.9 T
 - EC 170GHz at the plasma center
 - Similar characteristics as "high li" mode^[**] - elongation~1.7, q_{95} ~ 11
 - Pulse terminated by PFC overheat due to fast ion losses

KSTAR

2022 ITER Summer School (IISS) lecture

¹⁹Non-inductive CD and bootstrap fraction estimates of high β_P scenarios

S. Hahn et al, 2017 IAEA-TM-SSO

The longest pulse (~90s H-mode) @ KSTAR achieved using high βp state H.S. Kim et al., IAEA FEC 2020. EX/P2-02

Creation of a long pulse : two aspects to consider

• Only a few scenarios with high fraction of non-inductive current drive (NICD) can sustain the pulse over the inductive flux consumption limit

- The long pulse discharges interacts with the surrounding hardware, changing the known engineering constraints during the discharge
 - 1) vacuum vessel chamber conditions
 - additional constraint applies
 - conditions vary during the pulse
 - 2) auxiliary heating devices the CD efficiency can drop
 - 3) diagnostics basic diagnostics can change
 - 4) control magnets inductive/NI portion varies

Switching to SC device has both advantages / disadvantages

	Pro	Con
Toroidal field	Can maintain the field larger & longer under lower cost	Conventional between- shot GDC is practically impossible
Poloidal field	Lower power supply requirements for larger magnet & higher current sustain	Coils are far away // Need to avoid AC loss accumulation // flux swing is rather limited
Vacuum vessel	Larger volume can be made under high BT	Opening is rather limited // baking takes more time

* Magnetic energy stored on the full-charged TF @ KSTAR ~ 0.5 GJ

Operational sequence design

TF field is on over 10 hours per day

- Glow discharge applied only when before/after the daily operation
- ✤ RF discharge cleaning applied for between-shot cleaning by the request of session leader
- Pulse operation controls are involved for magnet, gas, heating, and plasma discharge
- Each plasma discharge (shot) per 10~15 minutes
 - depending on the magnet temperature conditions
 - Creates shot-based data

Daily operation results

Operational sequence

Operation Phases of a full superconducting tokamak: Example of KSTAR

4-step procedures for SC tokamak operations

Different physical quantities monitored at different operation phases

Components monitored for plasma operation (2022.Jul)

RF cleaning (ECWC) has been adapted as the auxiliary wall conditioning for startup recovery

- Fundamental EC + He cleaning tested first
- PF coils charged to distribute the high-density part spread from resonant layer to both radial sides
- The present version uses X2 ECRF instead (just for BT operation conveniences)
- The main effect is believed as easier burn-through
- Reduction of retention is questionable

ELM suppression attempt in a long pulse (~45s) reveals what's changing during the pulse

Courtesy by J.K. Park (PPPL)

K§TAR

Magnetic equilibrium subject to change during the long pulse

MDSplus, shot = 18302, run = EFITRT1, time = 19.4505 MDSplus, shot = 18302, run = EFITRT1, time = 6.00275

- By comparing rtEFIT & divertor IR measurement at #18302, inward **movement of the outboard striking point** is confirmed as real
 - Possible reasons:
 - Magnetics sensor drift & thermal effect on the pickup coils
 - The kinetic property change (βp drop, ne increase) can vary the squareness
- Later in 2022 we found that the choice of shape control can reduce/increase such changes
 - Switching from RX to Rstk (radial position of outboard striking point) feedback reduced the moving issue

PFC temperature rise is related to the pulse length but no strict relations

Beam prompt loss control important for avoiding PFC overheat / hotspots

• The guiding-center orbit code accounts for the PFC hotspots by NB prompt loss in the outboard poloidal limiters

T. Rhee, K. Shinohara, H.-s. Kim et al., Physics of Plasmas 1 (2019).

C(III)/D ratio evolution during the long pulse

Visible spectrometer KSTAR / Courtesy by SooHyun Son (KSTAR)

Loop voltage feedback control on Vloop ~0 target demonstrated the NICD varies over time

• Ip target regulation for Vloop ~0 target (part of the profile control @ PCS)

K§TAR

2022 ITER Summer School (IISS) lecture

Control of density can slow down performance degradation in L-mode long pulses

Long high heat flux to PFC \rightarrow wall recycling increase \rightarrow particle balance change

Real-time EC control, switching from ECCD to ECH, in order to avoid the reflection

Realtime EC mirror steering system [*] enables mirror beam angle changes during the pulse

Under limited beam power $P_{NB} = 4.6 \text{ MW}$

EC4 Switched from ECCD to ECH in order to avoid reflection by high-ne plasma: techniques used for 1.1 MA /15s achievements

[*] M. Joung, M. Woo, J. Han, et al., Fus. Eng. Des. 151 (2020) 111395.

N2-seeding Detachment control beyond the wall time

- The max PFC temperature remain under the safe regime (< 350 C) throughout the pulse
- See D. Eldon's talk for control details (also in D. Eldon, PPCF 2022)

Various control techniques utilized to automate long-pulse n=1 ELM crash suppression

A pre-emptive RMP-ELM suppression based on the ML L-H detector

Adaptive ELM control that regulates the ELM frequency and amplitude

Concluding Remarks on designing long-pulse tokamak operations

- Think about the Operational Space & Limits
 - On tokamaks, inductive CD has a hardware limit and NICD also bounded to the heating/CD capacity
 - Model-based approach always helps
 - Choose the most probable one
- Interface matters, not only the fast part but also the slow/longterm part
 - Fast parts require automation that the human cannot react
 - Slow/longterm part may include human reaction interfaces (e.g. Emergency stop buttons)
- Integration & Orchestration important
 - It is not a mere plasma physics, but a whole integration of modern science & technology
 - Measurement should not be disregarded → good measurement makes everything work

